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SUMMARY

Adjoint-based and feature-based grid adaptive strategies are compared for their robustness and effectiveness
in improving the accuracy of functional outputs such as lift and drag coefficients. The output-based adjoint
approach strives to improve the adjoint error estimates that relate the local residual errors to the global error
in an output function via adjoint variables as weight functions. A conservative adaptive indicator that takes
into account the residual errors in both the primal (flow) and dual (adjoint) solutions is implemented for the
adjoint approach. The physics-based feature approach strives to identify and resolve significant features of
the flow to improve functional accuracy. Adaptive indicators that represent expansions and compressions
in the flow direction and gradients normal to the flow direction are implemented for the feature approach.
The adaptive approaches are compared for functional outputs of three-dimensional arbitrary Mach number
flow simulations on mixed-element unstructured meshes. Grid adaptation is performed with h-refinement
and results are presented for inviscid, laminar and turbulent flows. Copyright q 2006 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In engineering analysis and design, computational fluid dynamics (CFD) is typically used to
compute specific quantities that assess the performance of the apparatus under investigation. For
example, in a system such as an aircraft wing, these quantities are usually the integral output
functions such as the lift and drag coefficients. An accurate estimate of these functional outputs is
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essential for the design of wings. However, because of the approximations made to the governing
partial differential equations, and the compromise between the choice of discretization and available
computational resources, there is often a degree of uncertainty in CFD simulations about the
accuracy of these computed estimates. This reality forces the design engineer to include a large
factor of safety in his design to accommodate for the lack of a reliable error estimator to guide
his design process.

Error estimates of the computed outputs are an invaluable commodity to the designer and may
be used to make informed decisions about the factor of safety bounds for improving existing
design. Also, these error estimates are of immense help to the CFD engineer in providing a
quantitative assessment of the functional error (which provide a global measure of the local
residual/discretization errors) and may be used to develop an output-based adaptive approach. An
output-based adaptive approach may be able to identify regions of the flow that have significant
influence on the output functional and will also provide a better understanding and insight into the
relevancy of resolving physical features of the flow such as shock waves, stagnation points and
separation lines to improve functional accuracy.

The numerical solution of PDEs governing the flow requires discretization of the continuous flow
domain into a finite number of elements or volumes. Two approaches, structured and unstructured,
have evolved over the years to discretize the domain [1, 2]. Unstructured grids provide an alternative
to structured grid methods because of its inherent flexibility, and its ability to resolve highly complex
geometries efficiently. Another major advantage of unstructured grids is grid adaptation [3–6], as
the mesh can be locally enriched where needed, without affecting other regions of the mesh. Grid
adaptive techniques typically employ local error indicators to identify regions that affect the solution
accuracy and locally enrich those regions. A common approach is to use error indicators based
on the flow gradients or flow discontinuities. Flow regions that have large solution gradients are
resolved with more points and regions of minimal significance are coarsened. This will typically
lead to refinement of regions that are of physical significance such as boundary layer, shocks,
separation lines, stagnation points, etc. [6–13]. This physics-based feature approach sometimes
leads to requests to the grid generator, which result in focused local refinement of certain regions,
whereas, the adapted grid may not produce the desired increase in accuracy for a global output
functional. Moreover, these adaptive indicators may not be rigorous from an engineering context,
where the main concern will be the accuracy of the output functions.

The adjoint (dual) solution describes the sensitivity of the output function to the linearized flow
(primal) residuals. By invoking the dual problem, local residual errors resulting from approximation
of the solution to the PDEs can be related to the global error in an output function via adjoint
variables as weight functions. These error estimates can be used as a correction to produce
improved functional estimates. Using the adjoint error correction procedure [14–28], a grid adaptive
strategy may be developed to enhance the accuracy of the chosen output to a prescribed tolerance.
The adaptive strategy strives to improve the computable error estimates by forming adaptation
parameters/indicators based on the level of error in computable error correction. Based on this
strategy, a grid adaptive scheme can be implemented that takes into account the error in the primal
solution, or both the primal and dual solutions. Becker and Rannacher [26–28] have developed this
output-based adaptive procedure by exploiting finite element orthogonality properties and duality
concepts. Their adaptation parameter included only the error in primal solution. By invoking the
dual (adjoint) problem, Süli [29] and Süli and Houston [30] have performed global error control
for adaptive finite element approximations of hyperbolic problems. They found computable error
bounds (based on error in primal solution) of linear functional to drive the adaptive algorithm.
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Peraire and collaborators [31, 32] have incorporated an adaptive procedure based on an implicit
a posteriori procedure for computing upper and lower bounds on functional outputs of finite
element solutions. Venditti and Darmofal [23, 33, 34] have enhanced this output-based adaptive
procedure by including the error in both primal and dual solutions to form the adaptation parameters.
They have compared this procedure with a curvature-based adaptive approach and demonstrated
its robustness on finite element and finite volume discretizations. Müller and Giles [35] have
employed an alternate output-based strategy based on the computable error estimates. In principle,
this leads to an adaptive algorithm for minimizing the magnitude of the correction and hence, not
a very robust approach. Balasubramanian [36] has compared the adaptive strategies by Venditti
and Darmofal [23, 33, 34] and Müller and Giles [35]. Park [37, 38] has employed the adjoint-
based adaptive procedure of Venditti and Darmofal [23, 33, 34] for three dimensional RANS
simulations.

In the present study, adjoint-based [23, 33, 34] and feature-based [9–12] grid adaptive approaches
are implemented and compared for functional outputs of arbitrary Mach number flow simulations
on mixed-element unstructured meshes. The three-dimensional compressible Reynolds-averaged
Navier–Stokes equations are solved as described in Reference [39], by introducing preconditioning
that is uniformly applicable to Mach numbers ranging from essentially incompressible to super-
sonic. The one-equation turbulence model of Spalart and Allmaras [40, 41] is used for turbulent
flows. The adjoint adaptation procedure requires a smooth reconstruction of the flow and adjoint
solutions to a fine-mesh to compute the error indicators. The current study is based on a discrete
adjoint formulation [42] and employs the meshless moving least squares (MLS) approximation
[43–48] to reconstruct the coarse-mesh flow and adjoint solutions to fine-mesh. All the previous
work on three-dimensional adjoint adaptation [37, 38] have been performed on unstructured tetra-
hedral meshes. The present study strives to support a mixed-element unstructured mesh, comprising
of hexahedrals, prisms, pyramids and tetrahedrals. Also, the present study extends the adjoint error
estimation procedure for both uniformly refined (obtained by h-refinement of each coarse-mesh
element in a fixed ratio, say 1:8) and non-uniformly refined (obtained from a grid generator such
as AFLR3 [49] by manually setting the point spacing) fine-meshes. The adaptive mesh library is
based on References [50–53] and performs isotropic h-refinement of the elements. Results are
presented for inviscid, laminar and turbulent flows.

2. GOVERNING EQUATIONS

2.1. Fluid analysis

The Reynolds-averaged Navier–Stokes equations for three-dimensional, time-dependent, variable
Mach flows are presented here in a non-rotating Cartesian co-ordinate system for a finite-volume
framework. In the absence of body forces, the non-dimensionalized equations in integral form for
a bounded domain �, with boundary ��, can be expressed in primitive variable form [54] as

MC−1
q

�
�t

∫
�
q dV +

∮
��

Fi · n̂ dS −
∮

��
Fv · n̂ dS = 0 (1)

where n̂ = {nx , ny, nz}T is the outward pointing unit normal vector to the boundary ��. The
conservative flux formulation is written in terms of primitive variables to facilitate preconditioning.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1541–1569
DOI: 10.1002/fld



1544 R. BALASUBRAMANIAN AND J. C. NEWMAN III

The preconditioning matrix

C−1
q = diag[1, 1, 1, 1, �(Mr )] (2)

is a constant diagonal matrix that only depends on the reference Mach number (Mr ) [39]. In
Equation (1), M=[�Q/�q] is a transformation matrix from conservative variables Q= {�, �u, �v,

�w, �et }T to primitive variables q={�, u, v, w, p}T. Here, � is the density; u, v, and w are the
components of velocity in the x, y, and z directions, respectively; p is the pressure; et is the
specific total energy; and Fi , Fv are the inviscid and viscous flux vectors.

The flow solver used in the present study is a node-based, finite volume implicit scheme
built on an unstructured grid framework capable of handling mixed elements [54, 55]. The solver
uses upwind differencing to discretize the convective terms and the modified Roe’s flux-difference
scheme described in References [39, 56] to evaluate the fluxes. The viscous flux terms are evaluated
using the edge-based positive scheme presented in Reference [54]. The one-equation turbulence
model of Spalart and Allmaras [40, 41] is used for turbulent flows. The reader is referred to
References [54, 55] for a detailed description of the discretization and solution methodology.

2.2. Discrete adjoint analysis

Consider the following form of steady-state non-linear governing equations, where Q represent
the steady-state solution vector, X , the grid co-ordinates and �k , the set of design variables. The
discrete residual vector R at steady state is given by

R(Q, X, �k) ≡ RI (Q, X, �k) + B(Q, X, �k) = 0 (3)

Here, RI is the discretized residual at the interior and B, the residual at the boundaries (accounting
for the boundary conditions). Let F(Q, X, �k) represent the cost/output function of interest. For the
discrete adjoint formulation, the output function of interest may be augmented with the non-linear
discrete flow equations via adjoint variables � as

F(Q, X, �k) = F(Q, X, �k) + {�}TR(Q, X, �k) (4)

Equation (4) results from the fact that for a steady solution the residual vector is zero. Hence, the
inner product of any vector with the residual vector must also be zero. Linearizing Equation (4)
yields

∇F = {�}T
{

�R
�X

�X
��k

+ �R
��k

}
+

{
�F
�X

�X
��k

+ �F
��k

}
+

({
�F
�Q

}
+ {�}T

[
�R
�Q

]){
dQ

d�k

}
(5)

Since {�} is yet to be defined, it may be chosen to force the coefficients of {�Q/��k} to be zero.
The equation for adjoint variables is given by

[
�R
�Q

]T
{�} = −

{
�F
�Q

}T

(6)

The interested reader is referred to References [42, 57] for a complete discussion on the solution
procedure, linearization of flux limiters, parallel implementation and demonstration of consistency
of linearization.
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3. ADJOINT ERROR ESTIMATION

Typically, in engineering applications of CFD, an accurate estimate of the output function F(Q)

is desired. But often, a compromise must be made between the fidelity of solution obtained and
the available resources. To elaborate on this, consider discretization of the computational domain
(�) using a coarse-mesh �H and a fine-mesh �h . H and h (H>h) may represent suitably defined
length scales based on the approximation such as finite difference, finite element or finite volume.
Let RH (QH ) and Rh(Qh) be the non-linear residual vectors obtained by discretization of the
flow equations on �H and �h . Let FH (QH ) and Fh(Qh) be estimates of F(Q) from �H and
�h . FH (QH ) and Fh(Qh) are evaluated using QH and Qh , the discrete solutions on �H and
�h , respectively. The coarse-mesh �H is affordable in terms of memory and computation time.
However, the estimate FH (QH ) may not be accurate enough for engineering applications. The
fine-mesh estimate Fh(Qh) may satisfy the desired accuracy criteria, but is prohibitively expensive
to compute. A computationally efficient error correction procedure [14–17, 21–23] is introduced
that produce improved estimates of output functions without ever solving on the fine-mesh �h .

By introducing a perturbation �Qh to the fine-mesh solution Qh , and performing a Taylor’s
series expansion of Fh(Qh + �Qh) and Rh(Qh + �Qh) yields

Fh(Qh + �Qh) = Fh(Qh) +
{

�Fh
�Qh

}
�Qh + · · · (7)

Rh(Qh + �Qh) = Rh(Qh) +
[

�Rh

�Qh

]
�Qh + · · · (8)

Now, defining �Qh = Qh
H − Qh , where Qh

H is the solution at fine-mesh obtained through prolon-
gation of coarse-mesh solution QH , Equations (7) and (8) can be written as

Fh(Qh) = Fh(Q
h
H ) +

{
�Fh
�Qh

}
Qh

H

(Qh − Qh
H ) + · · · (9)

Rh(Qh) = Rh(Q
h
H ) +

[
�Rh

�Qh

]
Qh

H

(Qh − Qh
H ) + · · · (10)

Here, Fh(Qh
H ) is the fine-mesh estimate of the function evaluated using Qh

H ; {�Fh/�Qh}Qh
H
is the

linear sensitivities of the fine-mesh function with respect to Qh
H ; Rh(Qh

H ) is the residual vector
evaluated at the fine-mesh using Qh

H ; and [�Rh/�Qh]Qh
H
is the fine-mesh Jacobian evaluated using

Qh
H . Q

h
H is given by

Qh
H = Ph

H QH (11)

and Ph
H is a suitably defined prolongation operator.

For a steady-state problem, Rh(Qh) = 0. Assuming the well-posedness of Equation (10) yields

(Qh − Qh
H ) ≈−

[
�Rh

�Qh

]−1

Qh
H

Rh(Q
h
H ) (12)
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Substituting Equation (12) in Equation (9)

Fh(Qh) ≈ Fh(Q
h
H ) −

{
�Fh
�Qh

}
Qh

H

[
�Rh

�Qh

]−1

Qh
H

Rh(Q
h
H ) (13)

≈ Fh(Q
h
H ) + {�h}TQh

H
Rh(Q

h
H ) (14)

where {�h}TQh
H

is the adjoint solution vector at the fine-mesh evaluated using Qh
H . The adjoint

equation for {�h}Qh
H
can be written as

[
�Rh

�Qh

]T
Qh

H

{�h}Qh
H

= −
{

�Fh
�Qh

}T

Qh
H

(15)

To avoid the need for computing {�h}TQh
H
on the fine-mesh, it may also be approximated through

interpolation as

{�h}Qh
H

≈ �hH = Ph
H �H (16)

where �H is the adjoint solution at the coarse-mesh given by Equation (6). The computable estimate
of the output function is given by

F(Q)= Fh(Q
h
H ) + {�hH }TRh(Q

h
H ) (17)

In the above expression, {�hH }T Rh(Qh
H ) is the error correction term that approximates the error

in output function as the inner product of the adjoint solution and the primal residual error. The
auxiliary computations needed by this procedure are: prolongation of coarse-mesh flow and adjoint
solutions to the fine-mesh; and functional and residual evaluations on the fine-mesh.

3.1. Prolongation operators

The prolongation operation given by Equation (11) can be expanded as

Qh
H = Ph

H QH ≡
n∑

I=1
�k
I (QH )I (18)

where �k ={�k
1,�

k
2, . . . , �

k
n} are the MLS shape functions, k is the order of the basis function,

and n is size of the MLS support stencil. The MLS shape functions �k = {�k
1, �

k
2, . . . , �

k
n} are

obtained by a least squares minimization problem described in Appendix A. Linear and quadratic
basis functions are considered with cubic spline [47] weights. Weight functions are defined with
compact circular or rectangular supports [47, 57]. Once the supports are built, weights are applied,
either isotropically as radial weights, or anisotropically as tensor product weights. Mixed supports
are also defined; i.e. circular support with isotropic weights for tetrahedrals and pyramids (inviscid
regions) and rectangular support with anisotropic weights for prisms and hexahedrals (boundary
layer regions).

For tetrahedral meshes the stencil is built using circular supports. For mixed-element meshes,
circular supports are used to build the stencil in regions of tetrahedrals and pyramids, and rectangular
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supports are used in regions of prisms and hexahedrals. The interested reader is referred to
Reference [57] for a detailed discussion on the MLS approximation and the approach to build a
compact support.

4. ADAPTIVE INDICATORS

4.1. Adjoint-based approach

The present output-based adaptive strategy suggested by Venditti and Darmofal [28, 33, 34] is based
on the adjoint error correction procedure described in Section 3. The adaptive procedure strives to
improve the error estimates {�hH }T Rh(Qh

H ) by reducing the level of error in the computable error
correction. By including the error in computable estimates, Equation (14) can be written as

F(Q) − Fh(Q
h
H ) ≈{�hH }T Rh(Q

h
H ) + {�h − �hH }TRh(Q

h
H ) (19)

In the above equation, the first term on the right-hand side is the computable error correction and
the second term is the error in computable correction. The relationship between the primal (flow)
and dual (adjoint) problem gives rise to another expression for the second term. Neglecting the
non-linear effects, the second term can be written as

(�h − �hH )T Rh(Q
h
H ) ≈ R�

h(�
h
H )(Qh − Qh

H ) (20)

where R�
h(�

h
H ) is the adjoint residual given by

R�
h(�) =

[
�Rh

�Qh

]T
Qh

H

{�} +
{

�Fh
�Qh

}
Qh

H

(21)

A conservative adaptive indicator can be formed by including the errors in computing the adjoint
solution also in the formulation. The error indicator (EI ) formed by including both the primal and
adjoint residual errors is

EI = (�h − �hH )TRh(Qh
H ) + R�

h(�
h
H )(Qh − Qh

H )

2
(22)

The error intensity (EI ) at each fine-mesh node i can be evaluated as

(EI )i = {|(�h − �hH )Ti Rh(Qh
H )i | + |R�

h(�
h
H )i (Qh − Qh

H )i |}
2

(23)

By approximating

[�h − �hH ] ≈ [(�hH )HO − (�hH )LO] ≡ [�HO − �LO]
[Qh − Qh

H ] ≈ [(Qh
H )HO − (Qh

H )LO] ≡ [QHO − QLO]

Equation (23) can be written as

(EI )i = |(�HO − �LO)Ti Rh(QHO)i | + |R�
h(�

HO)i (QHO − QLO)i |
2

(24)
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where �HO, QHO and �LO, QLO are the higher-order and lower-order prolongated adjoint and
flow solutions. Higher-order prolongation is performed using quadratic basis and lower-order
prolongation is achieved using linear basis. This has advantages computationally, as the need
to solve for the adjoint solution at the fine-mesh is avoided and the accuracy is not affected
significantly. The only computational costs on this larger mesh are function evaluations, flow and
adjoint residual evaluations, and dot product of vectors.

The formation of adaptation parameters at the coarse-mesh from the error intensities at the fine-
mesh differs slightly for uniformly and non-uniformly refined fine-meshes, but, the underlying
principle is essentially the same. The adaptation parameter A1

p for a coarse-mesh node k can be
obtained from a uniformly refined fine-mesh by looping over all the coarse-mesh edges surrounding
node k, and adding one-half of the error intensities (EI ) from each of the embedded fine-mesh
nodes located at the midpoint of these edges. The adaptation parameter A1

p at node k is given by

(A1
p)k =

n(k)∑
j=1

(EI ) j

2
(25)

where n(k) is the summation over all the embedded fine-mesh nodes (which are at the midpoint of
the edges surrounding node k). The adaptation parameters can be obtained from a non-uniformly
refined fine-mesh by looping over all the coarse-mesh elements that contain fine-mesh nodes and
split the error intensity EI between all the nodes that make the element. The adaptation parameter
A1
p at node k is given by

(A1
p)k =

e(k)∑
i=1

n(i)∑
j=1

(EI ) j

di
(26)

where e(k) is the number of coarse-mesh elements incident at node k, n(i) is the number of
fine-mesh nodes contained by element i and di is the element size (number of nodes that make
element i).

4.2. Feature-based approach

The second adaptive strategy is based on feature detection [9–12] and strives to identify and resolve
the significant features of the flow. The adaptation parameter (A2

p) can be defined as

A2
p = {e1, e2, e3} (27)

where e1, e2, e3 are the error indicators given by

e1 = max

[
−V · grad Q

|V| , 0

]
(28)

e2 = max

[
+V · grad Q

|V| , 0

]
(29)

e3 =
∣∣∣∣grad Q − V

|V|
(
V · grad Q

|V|
)∣∣∣∣ (30)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1541–1569
DOI: 10.1002/fld



GRID ADAPTATION FOR FUNCTIONAL OUTPUTS 1549

| · | represent the magnitude, Q is any suitable flow property and V denotes the velocity vector.
Each of these error indicators can isolate a particular type of feature. The first two error indicators
represent expansions and compressions in the flow direction and the third represents gradients
normal to the flow direction [10]. At viscous boundaries, A2

p is defined only by the magnitude of
the gradient of Q (|grad Q|) because of the no-slip boundary conditions (V= 0).

5. ADAPTATION MECHANICS

Simple adaptation mechanics are employed in the present study. The adaptation procedure
employed in the present study constitutes two stages: (1) formation of element-adaptation flags;
(2) h-refinement.

The adaptation parameters A1
p or A2

p given in Equations (25)–(27) are formed at all the coarse-
mesh nodes. These nodal values are transferred to the elements by a simple averaging. The mean
(�) and standard deviation (�) of the adaptation parameters over all the coarse-mesh elements are
computed and elements are flagged for refinement, if their adaptation parameter is greater than a
proposed error limit (elim) given by

elim = � + crel ∗ � (31)

where crel is a relaxation factor usually greater than 0.5. For adaptation parameter A2
p, each error

indicator is treated independently, allowing particular features in the flow field to be isolated.
An unstructured mesh refinement module is developed using Python and C++ to perform

adaptation. The adaptive mesh library is based on References [50–52] and performs isotropic
h-refinement of the elements. The refinement template [53, 57] controls the pattern of subdivision
of the mesh elements. The reader is referred to Reference [57] for the refinement patterns of
different element types used in the study. In the present study, only node addition is considered
and mesh coarsening is not implemented. h-Refinement is performed in four steps:

1. isotropically refine all flagged elements.
2. loop over all elements and identify the refinement pattern for each element by adding new

nodes if needed; this step should be repeated till no new nodes are added and all the elements
have valid refinement patterns.

3. split the element based on its refinement pattern.
4. perform boundary projection.

For h-refined tetrahedral meshes, quality improvement by local reconnection and Laplacian
smoothing is performed using AFLR3 [49]. No quality improvement is performed on mixed-
element meshes. In the present study, the mixed-element meshes from AFLR3 [49] typically have
prisms in the boundary layer, tetrahedrals in the inviscid regions and pyramids in the transition
region. Anisotropic refinement of prisms resulted in poor quality pyramids and tetrahedrals in the
boundary layer. This is not desirable and hence, anisotropic refinement of prisms is not supported
in the present study. Because of this, no refinement is allowed in the streamwise direction of
boundary layer, especially for prisms. If streamwise refinement is allowed, this resulted in the
refinement of the whole layer to preserve the shape of prism.

The adaptation process create boundary nodes at the midpoint of the edges, by a simple averaging
of the node co-ordinates. Boundary node projection is accomplished by using a transfinite, visually
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continuous, triangular interpolant explained in References [5, 58]. The interpolant is based on side-
vertex interpolation in triangles [58]. The cubic Hermite interpolant uses outward surface normals
to reconstruct the surface and the resulting reconstructed surface is a G1 representation with a
continuously varying outward normal vector. The reader is referred to Reference [5] for a derivation
of the interpolant. This is a slightly better approximation than the simple averaging of the nodes. In
boundary layer regions if the projected boundary node resulted in negative volumes, it is replaced
with the averaged value.

6. RESULTS AND DISCUSSIONS

Grid adaptation is performed using adjoint-based and feature-based approaches and the improve-
ment in functional estimates is observed. For adjoint-based adaptation, the adaptive indicators are
evaluated by prolongating the flow and adjoint solutions to a fine-mesh using the MLS approxi-
mation described in appendix. The fine-mesh is obtained by uniform or non-uniform refinement.

6.1. Inviscid flow

The first test case is inviscid flow over an Onera M6 wing at an angle of attack of 3.06◦ and
Mach number of 0.8395. Adjoint-based adaptation is performed for both lift (CL) and drag (CD)

coefficients on the wing and compared with feature-based adaptation. A lambda shock is typical
of these flow conditions and the estimates of CL and CD are largely dependent on the accurate
prediction of the shock and its location. For the adjoint-based adaptation, the non-uniformly
refined fine-mesh with 976 503 nodes, 286 728 surface triangles and 5 372 918 tetrahedrals is used
to establish the adaptive indicators.

Figures 1(a) and (b) show the convergence of CD and CL after four adaptive iterations. The
adjoint-CD adaptation reaches the finest-mesh estimate from non-uniform refinement in two
iterations with less than 200 000 nodes compared to 976 503 nodes at the finest-mesh; a fac-
tor 5 reduction in mesh size for the same CD value. Also, the CD value from the final adjoint-CD
adaptation reaches the uniformly refined finest-mesh estimate with less than 400 000 nodes com-
pared to approximately 2 000 000 nodes at the finest-mesh; again, a factor 5 reduction in mesh size
for the same CD value. Adjoint adaptation with correction achieves super-convergent estimates and
may be converging to the asymptotic value for CD. This can be verified by observing the CD values
from uniform refinement. The extrapolated value is obtained from a linear fit of the uniformly
refined mesh CD values similar to References [37, 38]. The feature-based adaptation is converging
to an erroneous value significantly larger than the finest-mesh CD. From Figure 1(a), it can be
observed that the CD calculation from adjoint-CL adaptation is better than feature-based adaptation,
but, slightly inferior to adjoint-CD adaptation. It can be noticed from Figure 1(b) that CL is better
predicted by the adjoint approach, and the feature approach is converging to a lower estimate of
CL. The error corrected CL estimate from adjoint adaptation has achieved the finest-mesh value in
two iterations. Also, the CL calculation from adjoint-CL and CD adaptations compare favourably.

The initial and adjoint-CD adapted grids are shown in Figures 2(a) and (b). There is significant
refinement near the leading and trailing edges and at the lambda shock location. Figure 3(a) shows
the initial grid on the upper wing surface. The surface grids from adjoint-CD and feature adaptations
are shown in Figures 4(a) and 5(a). The feature-based adapted grid has excessive refinement near
the leading and trailing edges, but, have poor shock resolution. The poor CD results from the feature
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Figure 1. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦. CD and CL conver-
gence: (a) CD vs number of nodes; correction computed with isotropic cubic spline weights and
linear–quadratic basis; and (b) CL vs number of nodes; correction computed with isotropic cubic

spline weights and quadratic–quadratic basis.

Figure 2. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) initial Onera M6 wing grid
with 42 114 nodes; and (b) Onera M6 wing grid after two adjoint-CD adaptations with 172 299 nodes.
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Figure 3. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) initial surface grid on
upper wing (total nodes: 42 114); and (b) density contours on upper wing for initial grid.

Figure 4. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) surface grid on
upper wing after two adjoint-CD adaptations (total nodes: 172 299); and (b) density contours

on upper wing for adjoint-CD adapted grid.

approach may be attributed to the failure to resolve the lambda shock. A look at the initial density
contours in Figure 3(b) can explain this behaviour. The initial grid has resolved the shock poorly
and the feature-based approach may need a well resolved initial grid to identify the features. The
resolution of the initial grid did not pose a problem for the adjoint approach. The density contours
on the upper wing surface of the adjoint and feature-adapted grids are shown in Figures 4(b) and
5(b). The lambda shock is clearly visible and captured well by the adjoint approach. However, the
feature approach has failed to resolve the shock in four iterations of adaptation. Figure 6(a) shows
the CL adaptation contours on the upper wing surface for the first adaptation. The adapted grid
after two CL adaptations is shown in Figure 6(b) for the upper wing surface. It can be observed
that there is considerable refinement near the lambda shock and near the leading and trailing edges
of the wing. The Cp distributions from the initial, final adjoint-adapted, and feature-adapted grids
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Figure 5. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) surface grid
on upper wing after two feature adaptations (total nodes: 498 863); and (b) density contours

on upper wing for feature-adapted grid.

Figure 6. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) adjoint-CL adaptation
parameters on upper wing surface in the initial grid; and (b) surface grid on upper wing after two

adjoint-CL adaptations (total nodes: 177 540).

at span wise locations z/c= 0.65 and 0.9 are compared with experimental data [59] in Figures 7(a)
and (b). From Figures 7(a) and (b), it can be observed that there is excellent agreement between
the Cp distributions from the adjoint-adapted grids and experimental data, whereas, the feature
approach has failed to resolve the lambda shock.

6.2. Viscous laminar flow

For the viscous case, only adjoint adaptation is performed and uniformly refined grids are used
to evaluate the adaptive indicators. The viscous test case is laminar flow over a unit cylinder
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Figure 7. Inviscid flow over Onera M6 wing: M∞ = 0.8395, AOA= 3.06◦: (a) Cp distribution on the
wing at span wise location z/c= 0.65; and (b) Cp distribution on the wing at span wise location z/c= 0.9.

Figure 8. Laminar flow over a cylinder: M∞ = 0.1, Re= 20. Initial cylinder grid with
the near symmetry plane removed.

at a Mach number of 0.1 and Reynolds number of 20. The cylinder is capped with symme-
try planes at both ends and has a height of half its diameter. The initial cylinder grid shown
in Figure 8 contains 22 242 nodes, 4608 surface quadrilaterals, 2520 surface triangles, 36 864
prisms and 5618 tetrahedrals. Adaptation is performed for CD using the adjoint approach. The
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Figure 9. Laminar flow over a cylinder: M∞ = 0.1, Re= 20. CD convergence. Correction computed with
mixed cubic spline weights and quadratic–quadratic basis.

convergence of CD is shown in Figure 9. The adjoint-based adaptation converges to the finest-
mesh estimate in two iterations. The adapted grid has 126 812 nodes compared to 303 152
nodes for the finest-mesh; a factor 2 reduction in mesh size is achieved for the same CD
value. A more accurate estimate of CD is attained by combining error correction with adapta-
tion if it is assumed that the exact drag value is lower than the finest uniform refinement grid
calculation.

The initial and final adapted symmetry plane grids are shown in Figures 10(a) and (b). Near
field views of the symmetry plane grids are shown in Figures 11(a) and (b). From Figure 10(b),
it can be observed that there is significant refinement in the front and wake of cylinder. The wake
regions are always a source of drag, and it can be noticed that the adjoint-based adaptation has
identified these regions for enrichment. The leading edge stagnation point and the regions of flow
acceleration near the top and bottom of the cylinder have been considerably refined. These are the
regions of the flow where pressure changes rapidly in the streamwise direction. This is confirmed
by a look at the pressure contours on the symmetry plane of the initial grid in Figure 12(a).
The pressure contours on the symmetry plane of the final adapted grid is shown in Figure 12(b),
and it can be noticed that the pressure contours are symmetric and are better resolved. The velocity
magnitude (U = √

u2 + v2 + w2) contours on the farther symmetry plane for the initial and adapted
grids are shown in Figures 13(a) and (b). From the Figures 13(a) and (b), it can be observed that
the shear layer is better resolved in the adapted grid in the wake regions. The tangential component
of velocity vector for the adapted grid is shown in Figure 14. The attached symmetric vortices
behind the cylinder can be observed.
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Figure 10. Laminar flow over a cylinder: M∞ = 0.1, Re= 20: (a) initial symmetry plane grid (total nodes:
22 242); and (b) symmetry plane grid after two adjoint-CD adaptations (total nodes: 126 812).

(a) (b)

Figure 11. Laminar flow over a cylinder: M∞ = 0.1, Re= 20: (a) near field view of initial symmetry
plane grid; and (b) near field view of adjoint-adapted symmetry plane grid.

6.3. Turbulent flow

Turbulent flow is simulated over a NACA 0012 rectangular wing at a Mach number of 0.95, chord-
based Reynolds number of 3 000 000 and angle of attack of 0◦. The test case is a supercritical flow
with strong shocks on the upper and lower surfaces of the wing. There is shock/boundary layer
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Figure 12. Laminar flow over a cylinder: M∞ = 0.1, Re= 20: (a) pressure contours on the symmetry
plane for initial grid; and (b) pressure contours on the symmetry plane for adjoint-adapted grid.

Figure 13. Laminar flow over a cylinder: M∞ = 0.1, Re= 20: (a) velocity magnitude contours on
the symmetry plane for initial grid; and (b) velocity magnitude contours on the symmetry plane for

adjoint-adapted grid.

interaction and because of the presence of strong shocks, the boundary layer thickens and separates
on the upper and lower wing surfaces. The output function considered is the drag coefficient CD
on the wing. The estimates of CD are largely dependent on the accurate prediction of the upper
and lower wing shocks, especially their locations, and adequate resolution of the separation zones
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Figure 14. Laminar flow over a cylinder: M∞ = 0.1, Re= 20. Tangential component of velocity vector
on the symmetry plane for adjoint-adapted grid.
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Figure 15. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95,
AOA= 0◦, Re= 3 000 000. CD convergence.

in the boundary layer. The initial grid contains 356 420 nodes, 2576 surface quadrilaterals, 23 072
surface triangles, 611 744 prisms and 258 874 tetrahedrals with a wall spacing of 8× 10−06 of the
mean aerodynamic chord. For the adjoint-based adaptation, the non-uniformly refined intermediate
fine-mesh with 1 003 430 nodes, 4570 surface quadrilaterals, 71 972 surface triangles, 1 706 813
prisms and 767 814 tetrahedrals is used to establish the adaptive indicators. The wall spacing on
the fine-mesh is same as the initial grid. Only a single iteration of adaptation is performed for the
turbulent case, because of memory constraints.

The convergence of CD is shown in Figure 15. The estimate of CD from the adjoint-adapted
grid with 478 952 nodes is better than the estimates from the non-uniformly refined fine-mesh
with 1 003 430 nodes, and the uniformly refined mesh with 2.35× 106 nodes. Also, note that
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Figure 16. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦,
Re= 3 000 000. Initial grid (total nodes: 356 420): (a) surface grid on upper wing; and

(b) upper wing surface density contours.

Figure 17. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Adjoint-adapted grid (total nodes: 478 952): (a) surface grid on upper wing after one adjoint-CD adaptation;

and (b) upper wing surface density contours.

the adapted grid CD has surpassed the estimate of the fine-mesh employed to form the adaptive
indicators. The feature-based approach has an opposite (decreasing) trend in CD than all the
other methods (uniform refinement, non-uniform refinement, and adjoint-based adaptation). The
surface grids on the upper wing surface for the initial, adjoint-adapted and feature-adapted grids are
shown in Figures 16(a), 17(a) and 18(a). The initial, adjoint-adapted and feature-adapted symmetry
plane grids are shown in Figures 19(a), 20(a) and 21(a). For the adjoint-adapted grid shown in
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Figure 18. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Feature-adapted grid (total nodes: 1 135 637): (a) surface grid on upper wing after one feature adaptation;

and (b) upper wing surface density contours.

Figure 19. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95,
AOA= 0◦, Re= 3 000 000. Initial grid (total nodes: 356 420): (a) symmetry

plane grid; and (b) pressure contours on the symmetry plane.

Figures 17(a) and 20, besides refinement near the leading edge, trailing edge and surface of the
wing, there is moderate refinement in the wake regions, regions upstream of leading edge (outside
boundary layer) and regions near the outer edge of boundary layer. The feature-adapted grid in
Figures 18(a) and 21 has considerable refinement near the leading and trailing edges of the
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Figure 20. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Adjoint-adapted grid (total nodes: 478 952): (a) symmetry plane grid after one adjoint-CD adaptation; and

(b) pressure contours on the symmetry plane.

Figure 21. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Feature-adapted grid (total nodes: 1 135 637): (a) symmetry plane grid after one feature adaptation; and

(b) pressure contours on the symmetry plane.
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Figure 22. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Cp distribution on the wing at span wise location z/c= 0.1: (a) upper wing; and (b) lower wing.

wing and has moderate surface refinement. There is no significant refinement in rest of the
regions.

The initial density contours on the upper surface of the wing is shown in Figure 16(b) and it
can be noticed that the shock is smeared. From the density contours of the adjoint-adapted grid in
Figure 17(b), it can be observed that the curvature of the shock is captured well and there is a crisper
shock compared to the initial grid. However, in the density contours of the feature-adapted grid
shown in Figure 18(b), the shock curvature is less captured, and there is no significant reduction in
the smearing of shock compared to the initial grid. The pressure contours on the symmetry plane
of the initial grid is shown in Figure 19(b). The shocks are poorly resolved outside the boundary
layer and in the inviscid regions. In the pressure contours of the adjoint-adapted grid shown in
Figure 20(b), there is less smearing of the shocks and their resolution in the inviscid regions
have improved greatly. There is no improvement in the pressure contours of the feature-adapted
grid shown in Figure 21(b). The feature adaptation has been handicapped by the poor resolution
on the initial grid. However, this does not pose a problem for the adjoint adaptation. A better
resolved initial grid may be needed for the feature adaptation. This is further affirmed by a look
at the Cp plots on the upper and lower wing surfaces at span wise locations z/c= 0.1 and 0.9 in
Figures 22 and 23.

Figures 24(a) and (b) show the Mach number contours on the symmetry plane for the adjoint-
adapted and feature-adapted grids. The Mach number contours are plotted here to see the resolution
of the separation zone in the boundary layer. From Figures 24(a) and (b), the thickening of the
boundary layer because of the shocks can be noticed. Figures 25(a) and (b) show the Mach number
contours near the trailing edge for the adjoint-adapted and feature-adapted grids. It can be observed
that the separation zone is better resolved by the adjoint adaptation, while, it is poorly resolved
in the feature approach. The feature approach predicts a large separation with the flow separating
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Figure 23. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Cp distribution on the wing at span wise location z/c= 0.9: (a) upper wing; and (b) lower wing.

Figure 24. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Mach number contours on the symmetry plane: (a) adjoint-adapted grid; and (b) feature-adapted grid.

immediately after the shock. But, the actual separation occurs further downstream close to the
trailing edge as predicted by the adjoint adaptation. The loss of accuracy in the feature-adapted
grid may be attributed to the poor resolution of the separation zone.
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Figure 25. Turbulent flow over NACA 0012 rectangular wing: M∞ = 0.95, AOA= 0◦, Re= 3 000 000.
Mach number contours near the trailing edge on the symmetry plane: (a) adjoint-adapted grid; and

(b) feature-adapted grid.

7. CONCLUSIONS

Adjoint-based and feature-based adaptive strategies have been implemented to improve the accuracy
of the chosen output to a prescribed tolerance. Grid adaptation results presented for inviscid, laminar
and turbulent flows demonstrate the robustness of the adjoint-based approach over the feature-based
approach. In all the adjoint adaptation cases presented, the same level of functional accuracy has
been accomplished with a much smaller mesh size (typically a factor of 3–5 reduction in mesh
size) compared to the uniformly and non-uniformly refined fine-meshes. The feature approach has
suffered by a poor resolution of the initial grid and failed to make significant improvements to
functional accuracy. However, the resolution of the initial grid did not pose a problem for the
adjoint adaptation. A better resolved initial grid is needed by the feature-based approach.

In the present study, adjoint error estimation and grid adaptation are performed in a single
processor, and because of memory constraints, complex geometries and large mesh sizes could
not be handled. Future work may be to perform error estimation and grid adaptation in parallel
along the lines of Reference [60] to handle large real life applications.

APPENDIX A: MOVING LEAST SQUARES (MLS) APPROXIMATION

The MLS procedure was proposed by Lancaster and Salkauskas [43] for performing smooth
interpolation of scattered data. The idea is to start with a weighted least squares fit for an arbitrary
data point in the domain, and then move this point over the entire parameter domain, where a
weighted least squares fit is computed and evaluated for each point individually. Consider the
following form of approximation, where x represent the co-ordinates of the points and u, the data
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at these points. The MLS approximation can be written as

uh(x)=
n∑

I=1
�k
I u I (A1)

where uh(x) is the MLS approximation at x; �k(x)= {�k
1(x),�

k
2(x), . . . ,�

k
n(x)} are the MLS shape

functions of order k; and n is the size of MLS support stencil. Equation (A1) can be rewritten as

uh(x)=
m∑
i=1

pi (x)ai (x)= pT(x)a(x) (A2)

where pi (x) are the monomial basis functions; m is the number of terms in the polynomial basis;
and ai (x) are the unknown coefficients. The common basis functions in three dimensions are

linear basis

pT(x)= (1, x, y, z) (A3)

quadratic basis

pT(x)= (1, x, y, z, xy, yz, zx, x2, y2, z2) (A4)

Now, the local least squares problem can be defined [43, 47] as
F = ∑

I
w(x − xI ) (uh(x, xI ) − u(xI ))2

= ∑
I

w(x − xI )
(∑

i
pi (xI ) ai (x) − uI

)2

(A5)

In the above equation, the polynomial basis pT is defined at xI and the unknown coefficients ai
are at x obtained from the weighted least squares fit for the local approximation. w(x − xI ) are
the weight functions with compact support given by

cubic spline [47]

w(s̄) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 − 4s̄2 + 4s̄3, s̄� 1

2

4
3 − 4s̄ + 4s̄2 − 4

3 s̄
3, 1

2<s̄�1

0, s̄>1

(A6)

where s =‖x− xI‖; s̄ = s/�; and � = smax is the radius of the circular support [47, 57]. The above
cubic spline weights have been constructed to possess C2 continuity. For rectangular supports
[47, 57], tensor product weights (also referred as anisotropic weights) can be defined as

w(x − xI ) =w

(‖x − xI‖
�1

)
w

(‖y − yI‖
�2

)
w

(‖z − zI‖
�3

)
(A7)

where �1 =‖x − xI‖max, �2 = ‖y− yI‖max and �3 = ‖z− zI‖max are the lengths of the rectangular
support. The unknown coefficients ai and the MLS shape functions �k

i s are obtained by solving
Equation (A5) as a least squares minimization problem:

find a={a0, a1, . . . , an} such that F(a∗) = min F(a)
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The MLS problem defined by Equation (A5) typically results in an overdetermined system with
more equations than unknowns. Also, the MLS system may be severely ill-conditioned on highly
stretched meshes. To avoid numerical instability and have a stable algorithm, the least squares
problem is solved using singular value decomposition (SVD) [61].

APPENDIX B: NOMENCLATURE

Error estimation variables

Ph
H prolongation operator

QH flow solution vector at coarse-mesh
Qh flow solution vector at fine-mesh
Qh

H prolongated flow solution vector at fine-mesh
�H adjoint solution vector at coarse-mesh
�h adjoint solution vector at fine-mesh

�hH prolongated adjoint solution vector at fine-mesh

�k moving least squares shape functions of order k

A1
p adjoint-based adaptation parameter

A2
p feature-based adaptation parameter

Error estimation definitions

uniformly refined mesh fine-mesh obtained using h-refinement
non-uniformly refined mesh fine-mesh obtained from a grid generator

by manually setting the point spacing
linear–linear basis linear basis for both flow and adjoint solutions
quadratic–quadratic basis quadratic basis for both flow and adjoint solutions
linear–quadratic basis linear basis for flow solution and

quadratic basis for adjoint solution
quadratic–linear basis quadratic basis for flow solution and

linear basis for adjoint solution
isotropic radial weights defined by circular supports
anisotropic tensor product weights defined by rectangular supports
mixed both radial and tensor product weights defined by

circular-rectangular supports
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